翻訳と辞書
Words near each other
・ Nils Gustafsson
・ Nilphamari Government High School
・ Nilphamari Sadar Upazila
・ Nilphamari Stadium
・ Nilphamari-1 (Jatiyo Sangshad constituency)
・ Nilphamari-2 (Jatiyo Sangshad constituency)
・ Nilphamari-3 (Jatiyo Sangshad constituency)
・ Nilpotence theorem
・ Nilpotent
・ Nilpotent algebra (ring theory)
・ Nilpotent cone
・ Nilpotent group
・ Nilpotent ideal
・ Nilpotent Lie algebra
・ Nilpotent matrix
Nilpotent operator
・ Nilpotent orbit
・ Nilpotent space
・ Nilradical
・ Nilradical of a Lie algebra
・ Nilradical of a ring
・ Nilratan Sircar
・ Nils
・ Nils (album)
・ Nils A. Røhne
・ Nils Aage Jegstad
・ Nils Aall Barricelli
・ Nils Aaness
・ Nils Aas
・ Nils Adlercreutz


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nilpotent operator : ウィキペディア英語版
Nilpotent operator

In operator theory, a bounded operator ''T'' on a Hilbert space is said to be nilpotent if ''Tn'' = 0 for some ''n''. It is said to be quasinilpotent or topological nilpotent if its spectrum ''σ''(''T'') = .
==Examples==
In the finite-dimensional case, i.e. when ''T'' is a square matrix with complex entries, ''σ''(''T'') = if and only if
''T'' is similar to a matrix whose only nonzero entries are on the superdiagonal, by the Jordan canonical form. In turn this is equivalent to ''Tn'' = 0 for some ''n''. Therefore, for matrices, quasinilpotency coincides with nilpotency.
This is not true when ''H'' is infinite-dimensional. Consider the Volterra operator, defined as follows: consider the unit square ''X'' = () × () ⊂ R2, with the Lebesgue measure ''m''. On ''X'', define the (kernel) function ''K'' by
:K(x,y) =
\left\ \; x \geq y\\
0, & \mbox.
\end
\right.

The Volterra operator is the corresponding integral operator ''T'' on the Hilbert space ''L''2(''X'', ''m'') given by
:T f(x) = \int_0 ^1 K(x,y) f(y) dy.
The operator ''T'' is not nilpotent: take ''f'' to be the function that is 1 everywhere and direct calculation shows that
''Tn f'' ≠ 0 (in the sense of ''L''2) for all ''n''. However, ''T'' is quasinilpotent. First notice that ''K'' is in ''L''2(''X'', ''m''), therefore ''T'' is compact. By the spectral properties of compact operators, any nonzero ''λ'' in ''σ''(''T'') is an eigenvalue. But it can be shown that ''T'' has no nonzero eigenvalues, therefore ''T'' is quasinilpotent.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nilpotent operator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.